Sign in

User name:(required)

Password:(required)

Join Us

join us

Your Name:(required)

Your Email:(required)

Your Message :

0/2000

Your Position: Home - Electrical Equipment & Supplies - How to choose A miniature circuit breaker?

How to choose A miniature circuit breaker?

Breaking capacity - Wikipedia

Breaking capacity or interrupting rating[1][2] is the current that a fuse, circuit breaker, or other electrical apparatus is able to interrupt without being destroyed or causing an electric arc with unacceptable duration. The prospective short-circuit current that can occur under short circuit conditions should not exceed the rated breaking capacity of the apparatus, otherwise breaking of the current cannot be guaranteed. The current breaking capacity corresponds to a certain voltage, so an electrical apparatus may have more than one breaking capacity current, according to the actual operating voltage. Breaking current may be stated in terms of the total current or just in terms of the alternating-current (symmetrical) component. Since the time of opening of a fuse or switch is not coordinated with the reversal of the alternating current, in some circuits the total current may be offset and can be larger than the alternating current component by itself.[3] A device may have different interrupting ratings for alternating and direct current.

For more information, please visit our website.

Choosing breaking capacity

[

edit

]

Calculation of the required breaking capacity involves determining the supply impedance and voltage. Supply impedance is calculated from the impedance of the elements making up the supply system. Customers of an electrical supply utility can request the maximum value of prospective short-circuit current available at their point of supply. Networks involving multiple sources of current, such as multiple generators, electric motors, and with variable interconnections may be analyzed with a computer. A system study will generally consider the maximum case of additions of generation and interconnection out to some projected horizon year, to allow for system growth during the useful life of the studied installation. Since practical calculations involve a number of approximations and estimates, some judgment is required in applying the results of a short-circuit calculation to the selection of apparatus.[4] Making capacity i.e. maximum fault current , device can carry, if it is closed in to the fault should be considered.

Breaking capacities

[

edit

]

For more information, please visit Sager.

Miniature circuit breakers and fuses may be rated to interrupt as little as 85 amperes and are intended for supplementary protection of equipment, not the primary protection of a building wiring system. In North American practice, approved general-purpose low-voltage fuses must interrupt at least 10,000 amperes. Types used in commercial and industrial low-voltage distribution systems are rated to safely interrupt 200,000 amperes. The rating of power circuit breakers varies according to the application voltage; a circuit breaker that interrupts 50,000 amperes at 208 volts might be rated to interrupt only 10,000 amperes at 600 volts, for example. Direct-current systems such as are typical with batteries are more of a problem than alternating current systems, because in the latter current regularly crosses the zero-point, whereas DC current by definition does not.

References

[

edit

]

How to Choose the Right Miniature Circuit Breaker?

When considering an MCB, there are six basic types: Z, K, D, C, B, and A. Z-rated breakers are the hardest to trip and require the surge to be almost 20 times the rated current of the line. Conversely, A-rated breakers will trip when the surge is only two or three times the rated current of the line. Normally, the first thing you should do is to check if the line is AC or DC. Check the safety protocols for the circuit in question too.

Determine the number of watts the breaker can withstand. Watts = amperage x voltage, or W = I x E. Figure out the demand factor, which is maximum demand load divided by the total connected load. For example, if a home has appliances that generate 10,000 watts when they&#;re all turned on, but the circuit has a demand maximum of 3,300 watts, then the demand factor is 33%.

The voltage rating of the breaker, or the shell that contains other breakers, will be the final determining factor when choosing a breaker. You certainly don&#;t want the breaker tripping too often or not enough. Too often will wind up being annoying, while not often enough might wind up being lethal.

If you are looking for more details, kindly visit miniature circuit breaker manufacturer.

29

0

Comments

0/2000

All Comments (0)

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name:(required)

Your Email:(required)

Subject:

Your Message:(required)

0/2000